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Flow Characteristics in Spin-Up of a Three-Layer Fluid

Evgeny Sviridov, Jae Min Hyun*
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology,
373-1 Kusong-dong, Yusong-gu, Daejeon 305-701, Korea

A numerical study is made of the spin-up from rest of a three-layer fluid in a closed, ver-
tically-mounted cylinder. The densities in the upper layer o;, middle layer o, and lower layer
03 are P3> 02> 01, and the kinematic viscosities are left arbitrary. The representative system
Ekman number is small. Numerical solutions are obtained to the time-dependent axisymmetric
Navier-Stokes equations, and the treatment of the interfaces is modeled by use of the Height of
Liquid method. Complete three-component velocity fields, together with the evolution of the
interface deformations, are depicted. At small times, when the kinematic viscosity in the upper
layer is smaller than in the middle layer, the top interface rises (sinks) in the central axis
(peripheral) region. When the kinematic viscosity in the lower layer is smaller than in the
middle layer, the bottom interface rises (sinks) in the periphery (axis) region. Detailed shapes
of interfaces are illustrated for several cases of exemplary viscosity ratios.
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Nomenclature Greek symbols
A Aspect ratio, R/H [—] (@,B,7) : Indicators [—]
2 2 : Rotation rate [s7!]
Fr . Froude number, ({i% [-] v . Kinematic viscosity [m?/s]
g ! Gravity [m/s?] v1,vz - Kinematic viscosity ratios, vi=vi/vs,
E . Ekman number, v/ Q;R? [—] ve=vs/vi [—]
H : Height of cylinder [m] 0 . Dimensionless density, 0o*/0s [—]
hy : The original height at the initial state [m] 01,02 Density ratios, p1=p%/03,
R Radius of cylinder [m] 02=05/05 [—]
Re : Reynolds number, Q,R%/v [—] 7 . Dimensionless time, Q2 [—]
p . Dimensionless pressure [ — | ¥ . Dimensionless meridional stream function
u* ! Reference velocity, 2R [m/s] [—]
t - Time [s] Subscripts
(V7, Ve, Vz) © Dimensionless velocity components | - values in upper layer

corresponding to (7, ¢, z) . Values in middle layer

2
(7,¢,2) : Dimensionless (radial, azimuthal, ver- 3 * Values in lower layer
f

tical) coordinates in cylindrical system * Final state

i . Initial state
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sity o, kinematic viscosity v) which completely
fills a vertically-mounted, closed cylindrical con-
tainer (radius R, height H, and the aspect ratio
A=H/R~O(1)). At the initial state, both the
fluid and the cylindrical container rotate steadily
about the central longitudinal axis at rotation
rate ;. At time =0, the rotation rate of the
cylinder is impulsively increased to Qr(=£02:+
A82). In response to this change, the fluid un-
dergoes an adjustment process involving a transi-
ent three-component velocity field. This overall
time-dependent flow process is termed the spin-
up, and the problem has occupied the center stage
in basic rotating flow research as well as in
technological applications. As is in engineering
situations, attention is focused to the cases when
the representative Reynolds number (Re=0,R?/
) is large so that a boundary layer-type global
flow prevails. In the studies of rotating flow, the
Ekman number, E=y/Q;R? is also widely used.
In industrial applications, knowledge of spin-up
flows is relevant to the design and operation of
rotating fluid machinery, chemical mixers and
material processing devices, to name a few.

For the linearized spin-up from an initial state
of rigid-body rotation, i.e., £;#0, AQ/Q,<K1,
the classical treatise of Greenspan & Howard
(1963) established that the entire process involves
three stages : first, the boundary layer forms on
the endwall disks over O (£2;!) ; second, the bulk
of the fluid is substantially spun-up over the
spin-up time scale O(Re"? Q7') ; third, the re-
maining small disturbances are adjusted over the
diffusion time scale O (Re2;/!).

The main mechanism for spin-up is the in-
ducement of meridional flow in the interior by
boundary layer suction. In the inviscid interior,
the radially-inward moving fluid, which main-
tains the angular momentum conservation, causes
the increase of angular velocity at a given radial
location. It is, therefore, important to point out
that the global spin-up is accomplished over the
spin—up time scale, which is an order-of-magni-
tude smaller than the diffusion time scale.

The nonlinear spin-up from rest (£2;,=0, AR/
Q,=1) poses challenging fundamental issues.
The basic model due to Wedemeyer (1964) clear-

ly demonstrated that the principal dynamic ele-
ment remains to be the meridional circulation in
the interior, which is induced by the boundary
layers on the endwall disks. In this case, however,
the interior at the initial state was at rest. One
significant feature is the presence of the radially-
inward propagating velocity shear front, which
separates the non-rotating and rotating regions.
These global flow features are captured by the
original model of Wedemeyer (1964), which was
later extended by Weidman (1976) and others.

The above-stated studies deal with the case
when the fluid is homogeneous and of constant
density. The spin-up from rest of two immiscible
fluids of different densities and kinematic vis-
cosities in a cylinder was investigated theoretic-
ally by several authors, e.g., Baker & Israeli (1981).
Lim et al.(1993) and Kim & Hyun (1994) mo-
dified the Wedemeyer model to describe the
spin-up from rest of a two-layer liquid system.
These results were in reasonable agreement with
the laboratory observations. In these models, the
density of the lower-layer p; is greater than that
of the upper layer o4, but the values of kinematic
viscosities of the two layers are left arbitrary. Of
particular interest here is the evolution of the
initially-flat interface between the two layers. The
final-state shape of the interface is a paraboloid ;
however, the transient pattern of the interface
during spin-up needs a careful scrutiny. It was
pointed out in Lim et al. (1993) that, if the kine-
matic viscosity of the upper layer v, is greater
than that of the lower layer v, the upper layer
spins up faster. Therefore, in this case, at small
times after the abrupt start of the rotation of the
cylinder, the interface bulges upward at small
radii near the axis and sinks downward at large
radii near the sidewall. These features are peculiar
to the nonlinear spin-up process of a two-layer
fluid system.

The purpose of the present study is to extend
the prior models to depict spin-up from rest of a
three-layer fluid. These efforts will shed light to
the transient process of adjustment to the impul-
sively-started rotating container of a multi-layer-
ed fluid system. The time-dependent behavior of
the interfaces, which separate the layers of fluid



Flow Characteristics in Spin-Up of a Three-Layer Fluid 273

of different densities and viscosities, will be illu-
strated. In this paper, numerical solutions are
acquired to the governing Navier-Stokes equa-
tions. The numerical data will be processed to
render portrayals of the interfaces and the three-
component velocity fields in the cylinder.

2. Formulation of the Problem

The cylinder is filled with three equal-volume
layers of immiscible fluids, as shown in Fig. 1. At
the initial state of rest, the horizontal interfaces
are located at height hs=H/3 and h.=2/3H
above the bottom endwall disk. The densities of
the lower, middle and upper layer are respectively
03, o5 and pf, p3 >3 > pi. As remarked earlier,
the values of kinematic viscosities of the three
layers are left arbitrary. At the initial instant =
0, the cylinder is abruptly set into rotation .£2
about its symmetry axis z*, and the task is to
describe the ensuing time-dependent motions of
fluids.

The governing time-dependent axisymmetric
Navier-Stokes equations, in dimensionless form,
are:

ry or

0z

0 (1)

I

Fig. 1 Schema of flow configuration
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in the above, p=ao1+ Lo+ 7y, r=aoivi+ Lo
Vot 7, which are

_{1, r&lower layer,
0, r&upper layer ;

B_{l, r&middle layer,
0, r&lower or upper layer ;

__ (1, r&upper layer,

= {O, r&lower layer ;
Also, in the above equations, ( Vy, Vo, V2), o and
p denote respectively the dimensionless velocities,
density and pressure. In the nondimensionaliza-
tion, the scales for velocity, length, time, density
and pressure are respectively u* (=QR), H, 1/,

0% and pfu*Z

In the formulation, it is apparent that the rele-
vant nondimensional parameters are the Ekman

vE _ (QR)*
R Froude number, Fr= of

density ratios, p1=p1/03, 02=p3/03 ; kinematic
viscosity ratios, vi=vi'/vs, Le=vs/vs ; aspect
ratio, A=R/H.

The associated boundary conditions are :

number, E=

Vy=0at yr=R/H, 2=0, 1 ;
V.=0at »=R/H, 2=0, 1 ;

Vq::l at R/H,
Vo=17 at z2=0, 1
V=0, %Ifzaazrzo as » — 0.

The relevant parameters for actual computations
were set in conformity with the earlier two-layer
spin-up problem of Kim & Hyun (1994):
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A=R/H=022, F»=0.4215
01=0.5573, 0,=0.7456

In an effort to depict the qualitative character of
low, five sets of kinematic viscosity ratios are
considered :

Set 1: 11=0.01, 1,=0.1
(E1=1.33-10"*, E»,=1.33-10"%, E3=1.33-107%).

Set 2: 11,=100.0, »»,=10.0
(E1=1.33-10"%, E»,=1.33-10"%, E3=1.33-107%).

Set 3: 11=1.0, 1»,=0.1
(E1=1.33-1072, E,=1.33-107%, E5=1.33-1072).

Set 4: vy1=1.0, 1,=10.0
(E1=1.33-107%, E,=1.33-1072, E5=1.33-107%).

Set 5: »1=1.0, 1,=1.0
(E1=1.33-10"% E,=1.33-1072, E3=1.33-1072).

Evidently, these parameters sets are selected to
exemplify respectively the flow configurations for
Vs> >y, 1s<1a<yi, WB=U1> Vs, V3= U< L
and v3=12=u1.

In numerical computations, a control-volume
approach is adopted to discretize the nonlinear,
coupled-system of partial differential equations.
These discrete equations form a set of coupled
algebraic equations, which are solved iteratively
by the SIMPLER method (Patankar, 1980). The
governing equations are solved on the axisy-
mmetric grid in the (#-z) plane. All the variables
represent the cell-centered quantities, and the ve-
locity components are defined on the cell faces.

The numerical tool to capture the defomation
of interfaces follows closely the Height of Liquid
method, which was developed by Nichols & Hirt
(1971). The reliability and accuracy of the pre-
sent numerical methodology was validated by
repeating the established test problems. Examples
(Brackbill et
al.,, 1992) and the two-layer liquid in a rotating
cylinder (Lim et al., 1993 ; Kim and Hyun, 1994) .
The numerical results demonstrated broad agree-

include the nonequilibrium rod

ment with the previously-published results in the
literature.

The number of grid points was tested in suffi-
cient detail, and, for most computations, a (100X

240) mesh in the (7-z) plane, with time step
Ar=107%, was utilized. A further reduction in the
step sizes leads to no noticeable change in the
computed output.

3. Results and Discussion

The evolution of meridional flow, together with
the deformation of interfaces in the (#-z) plane,
is exemplified in Fig. 2 for Set 1. Within each
layer, the meridional stream function ¢ is defined

_ 1o} __1Jad)
such that o V= 7 oz and o V= v or Here,

the fluid is incompressible, and o denotes the
local value within the pertinent layer. Therefore,
the lines of equivalues of ¥ within each layer
indicates the lines of equal values of mass flow
rate in the meridional flow field. At small times
after the start, both of the interfaces rise at small
radii near the central axis and descend at large
radii near the sidewall. The kinematic viscosity
in the upper layer is smaller than in the lower
layer ; therefore, the lower layer attains a faster
degree of spin-up, approaching the solid-body
rotation in a shorter period of time. At interme-
diate times, the interfaces gradually sink at small
radii and rise near the periphery. At large times,
the entire fluid system approaches the rigid-body
rotation and the interfaces tend to the charac-
teristic paraboloid shape, with the concave-sur-
face upward with a minimum at the axis. At small
times, the meridional flows are intense near the
bottom endwall disk and around the interfaces.
In the intermediate stages, since the upper and
middle layers have gained considerable angular
velocities, the meridional flows in these regions
weaken accordingly. At large times, the meridion-
al flows subside in general, as expected.

A k.
z b, . \‘._, B
. e
b v
E 4 )
=R L LA . |
=2 =14 =22 =70 =250

Fig. 2 Plots describing the meridional flow field for
Set 1. Values of 1 are normalized by E32QR?
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Fig. 3 Time history of the interface displacement at the axis

The time-dependent deformations of interfaces,
observed at the axis, are illustrated in Fig. 3(a)
for Set 1. As is apparent in the figure, the defor-
mation of the bottom interface is more notable
than of the top interface. As can be inferred, since
E 1< E;3, the top interface reaches the final state
faster than the bottom interface.

The results for Set 2, which represents the
opposite case (v1>v2>vs), is of interest. As dis-
played in Fig. 4 and Fig. 3(b), the interfaces sink
(rise) in the center (periphery) region at small
and moderate times. This reflects the development
of a low (high) pressure region in the central
(periphery) zone. At intermediate times, the lev-
els of the interfaces at the axis reach minimum
values. This indicates that the difference in az-
imuthal velocities in these layers is large. After-
ward, the interfaces gradually approach the final-
state paraboloid. Since ;> FE3, the bottom inter-
face reaches the steady state faster than the top
interface.

The results for Set 3, for which y1=y3> v, are
exhibited in Fig. 5. The kinematic viscosity in

3
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Fig. 4 Plots describing the meridional flow field for
Set 2. Values of 1 are normalized by E}2QR?
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Fig. 5 Plots describing the meridional flow field for
Set 3. Values of 1 are normalized by E32QR?

the middle layer is the smallest, which indicates
that the middle layer is spun-up latest. Therefore,
at small times, the top (bottom) interface rises
(sinks) at the central axis region. In this case,
around 7~22, the level of the top (bottom) in-
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terface at the axis reaches a maximum (mini-
mum). Afterward, the shapes of interfaces gradu-
ally tend to the final- state paraboloids, and the
meridional flows subside accordingly.

It should be remarked that, in the present study,
the final-state represents a rigid-body rotation,
and no internal flows exist. The Sweet-Eddington
flow, which occurs in density-stratified fluids, is
ignored in the present formulation by limiting to
a range of small Froude numbers (Greenspan,
1968 ; Flor et al., 2002).

Results for Set 4 (yi=vy3<v,) are shown in
Fig. 6. The spin-up is fastest in the middle layer.
At small times, the pressure in the central axis
region in the middle layer is lower than in the
periphery region. Consequently, at small times,
the top (bottom) interface sinks (rises) in the axis
region. At intermediate and large times, the upper
and lower layers approach the final-state at ap-
proximately equal times.

Figure 7 illuminates the case when the kine-
matic viscosities in all layers are equal. At small

times, spin-up proceeds at nearly equal speeds in
the three layers. Therefore, the pressure is lower
in the axis region than in the periphery ; both of
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Fig. 6 Plots describing the meridional flow field for
Set 4. Values of ¢ are normalized by E}"2QR®
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Fig. 7 Plots describing the meridional flow field for
Set 5. Values of ¢ are normalized by E}"2QR®
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Fig. 8 Time history of the angular velocity, V,/#. The position is at »=1/2 and z=1/6, 3/6, 5/6
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the interfaces sink (rise) in the axis (periphery)
region. Also, 03 >p5>pf, the fluid motions
are most (least) intensified in the lower (upper)
layer. The approach to the final-state is fastest in
the lower region.

Summarizing the computed results, the time
history of angular velocity, V,/7, is exhibited in
Fig. 8. The locations are at » =1/2, and z2=1/6,
3/6 and 5/6, which represents the points in the
lower, middle and upper layer. Clearly, the over-
all spin-up is characterized by the spin-up time
scale E™2 (or Re'?). The speed of spin-up in
each layer is determined by the value of Ekman
layer in each layer. These observations are in line
with the general understanding of the spin-up
dynamics.

It should be remarked here that some values of
E used in the computations, such as E~107", may
not be sufficiently small. In these cases, diffusion
from the sidewall and endwall may not be insub-
stantial, and the present procedures need to be
modified. For the bulk of computations, however,
the ranges of E values are small enough to sustain
the qualitative validity of the present results.

4. Conclusions

The deformation of the interface and the as-
sociated fluid motion are vigorous at small times.
When the kinematic viscosity is smaller in the
upper layer than in the middle layer, the top
interface rises (sinks) in the central axis (peri-
phery) region. When the kinematic viscosity is
smaller in the lower layer than in the middle
layer, the bottom interface rises (sinks) in the
periphery (central axis) region. At large times, as
spin-up proceeds, the shapes of the interfaces
tend to the paraboloids. Systematic experimental
verifications of the present results are defined.
This could lead to an extension to a multi-layer
fluid system.
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